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We have observed Rabi-like oscillations in a current-biased dc superconducting quantum interference device
presenting enhanced coherence times compared to our previous realization �J. Claudon et al., Phys. Rev. Lett.
93, 187003 �2004��. This Josephson device behaves as an anharmonic oscillator which can be driven into a
coherent superposition of quantum states by resonant microwave flux pulses. Increasing the microwave am-
plitude, we study the evolution of the Rabi frequency from the two-level regime to the regime of multilevel
dynamics. When up to three levels are involved, the Rabi frequency is a clear signature of a quantum behavior.
At higher excitation amplitude, classical and quantum predictions for the Rabi frequency converge. This result
is discussed in the light of a calculation of the Wigner function. In particular, our analysis shows that pro-
nounced quantum interferences always appear in the course of the Rabi-like oscillations.
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I. INTRODUCTION

It is well known that the classical dynamics of an anhar-
monic oscillator driven by an external monochromatic force
can exhibit very complex and rich behavior such as nonlinear
resonances, bistability oscillations, or chaotic dynamics.1–4

The search for a quantum signature in the quantum counter-
part of this problem has triggered a lot of interest.5–9 Ideally,
these investigations require a well defined system that can be
tuned all the way from the classical to the quantum limit.

In this perspective, Josephson phase circuits are appealing
experimental systems. Their phase dynamics mimics the one
of a fictitious particle oscillating in a washboardlike potential
well, with associated discrete energy levels. The system an-
harmonicity is tuned through external bias parameters, such
as current or magnetic flux. In a two-level system with a
sufficiently long coherence time, Rabi oscillations appear
during the transient following the switching on of the micro-
wave driving field.10 A multilevel system also supports simi-
lar �Rabi-like� oscillations.11 In this regime, the energy
granularity is still strong as compared to the mean energy.
Thus the multilevel dynamics was first fully described using
a quantum approach. Later, Gronbech-Jensen and co-workers
reproduced these oscillations using a purely classical
theory.12 Moreover, it was shown that multilevel Rabi-like
oscillations �RLOs� were less sensitive to thermal spoiling
than their two-level counterpart.13 These results raise the in-
triguing question addressed in the present paper: are Rabi-
like oscillations an unambiguous proof of quantum behavior?
Besides this fundamental motivation, a fine understanding of
the multilevel regime is also of interest for the accurate con-
trol of phase qubits and has motivated recent theoretical14–16

and experimental works.17,18

Very recently, it was proposed to analyze the resonance
line shape under strong driving to track classical and quan-
tum signatures.19 In this paper, we adopt a complementary
time domain approach. We report the measurement of Rabi-
like oscillations in a dc superconducting quantum interfer-
ence device �SQUID� circuit for various �w amplitudes. Im-

proved coherence times with respect to previous
experiments11 enable us to explore the crossover from two-
level to multilevel dynamics in detail. When up to three lev-
els are involved in the oscillation, the experimental Rabi fre-
quency versus the excitation amplitude exhibits a clear
quantum behavior, which can definitely not be explained by
a classical approach. However, when more than four levels
participate in the oscillation, the classical and quantum pre-
dictions converge. We discuss this issue in the light of
Wigner function calculations, showing in particular that
when the system energy reaches its maximum value, quan-
tum interference effects are strong, even in the case of a high
power excitation.

II. THE dc SQUID AND ITS OPERATION

The anharmonic oscillator under consideration is a
current-biased dc SQUID, which consists of two identical
Josephson junctions �JJs�, each with a critical current I0 and
a capacitance C0. The junctions are embedded in a supercon-
ducting loop of total inductance Ls, threaded by a flux �b. As
discussed in Ref. 20, the phase dynamics of the SQUID can
be treated as that of a fictitious particle having a mass m
=2C0��0 /2��2 moving in a one-dimensional cubic potential
��0=h /2e is the superconducting flux quantum�. The poten-
tial is completely characterized by the frequency �p of the
bottom of the well and a barrier height �U �Fig. 1�. These
two quantities depend on the magnetic flux and vanish at the
SQUID’s critical current Ic. For bias currents Ib� Ic, the par-
ticle is trapped in the anharmonic potential well. In the pres-
ence of an applied driving magnetic flux, the corresponding
Hamiltonian reads

Ĥ0�t� =
p̂2

2m
+

1

2
m�p

2x̂2 − ax̂3 + f�w cos�2��t�x̂ . �1�

Here, �p=2��p, x̂ is the phase along the escape direction,
and p̂ is the conjugate momentum associated with the charge

on the junction capacitance, Q̂= �2e /	�p̂. The cubic coeffi-
cient is given by
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a2 =
�m�p

2�3

54�U
. �2�

The �w flux acts as an oscillating force with a strength f�w
and a frequency �. Starting from Eq. �1�, the SQUID dynam-
ics can be treated either classically or with quantum mechan-
ics. In a quantum description and in the absence of driving
flux signal, the quantized vibration states within the potential
well are denoted as �n�, corresponding to energy levels En
with n=0,1 , . . .. The frequency associated to the �n�→ �k�
transition is denoted as �nk. The parameter 
=�01−�12 fully
characterizes the system anharmonicity. At second order in a
perturbative approach,


 =
15

4�

	a2

m3�p
4 =

5

36

h�p

�U
�p, �3�

the detuning between the transition �n−1�→ �n� and the fun-
damental one �0�→ �1� scales as �01−�n−1,n=
� �n−1�. In
the following, for improved precision in the data analysis,
the eigenenergies En of the system were determined numeri-
cally.

Our procedure to perform experiments consists in the rep-
etition of an elementary sequence, which is decomposed into
four successive steps. First, a bias current Ib is adiabatically
switched on through the SQUID at fixed magnetic flux �b.
The working point �Ib ,�b� defines the geometry of the po-
tential well and the circuit is initially in the ground state. A
fast composite flux signal, presented in Fig. 1�b�, is then
applied. The �w excitation pulse is followed by a dc flux
pulse which brings the system to the measuring point within
a few nanoseconds. This flux pulse reduces adiabatically the
barrier height �U and allows the escape of the localized
states to finite voltage states. Adjusting precisely the ampli-
tude and duration of the dc flux pulse, it is theoretically

possible to induce a selective escape of excited states. Be-
cause the SQUID is hysteretic, the zero and finite voltage
states are stable and the result of the measurement can be
read out by monitoring the voltage Vs across the dc SQUID.
Our measurement procedure destroys the superconducting
state and Ib has to be switched off to reset the circuit.

Though adiabatic, our measurement is one of the fastest
implemented in Josephson qubits. The delay between the end
of �w and the measurement �top of the dc pulse� is less than
3 ns. The measurement time, corresponding to the top of the
pulse, is 4 ns. The measurement speed is crucial to efficiently
detect fast relaxing states. This is especially true for a mul-
tilevel system since the relaxation rate of the excited state �n�
scales as n. Detection in the multilevel regime has been char-
acterized in Ref. 21 for settings identical to those used in this
paper. For states described by the set of occupancies
�p0 , p1 , p2 , p3�, the escape probability Pe out of the potential
well reads Pe=0.03+0.54p1+0.79p2+0.90p3.

The SQUID studied in this paper consists in two large JJs
of 15 �m2 area �I0=1.242 �A and C0=0.56 pF� enclosing
a 350 �m2 area superconducting loop. The two SQUID
branches of inductances L1 and L2 contribute to the total loop
inductance Ls=280 pH with the asymmetry parameter �
= �L1−L2� /Ls=0.414. As in our previous work, these param-
eters were determined combining two independent sets of
measurements: �i� macroscopic quantum tunneling of the
ground state and �ii� spectroscopic study of the �0�→ �1�
transition.21

The chip is cooled down to 30 mK in a dilution fridge.
The thermal energy is then small compared to the oscillation
energy of the circuit h�p	kB�500 mK. The high-
frequency flux signal is guided by 50  coax lines and at-
tenuated at low temperature before reaching the SQUID
through a mutual inductance. The nominal room-temperature
�w amplitude is denoted in the following as V�w. For details
on the circuit fabrication and the experimental setup descrip-
tion, we refer to Ref. 21.

III. RABI-LIKE OSCILLATIONS

In this section, we present experimental Rabi-like oscilla-
tions and their classical and quantum descriptions. Particu-
larly, we focus on the dependence of the Rabi-like frequency
on the microwave excitation amplitude; we examine when
this particular measurement offers a clear signature of quan-
tum behavior. The observability of beatings, predicted by the
quantum approach, is also discussed in the end of the sec-
tion.

A. Experimental procedure

Hereafter we present results obtained at the working point
�Ib=2.222 �A, �b=−0.117�0�. The experimental low
power spectroscopy measurements �Fig. 2�a�� present a reso-
nant peak centered at 8.283 GHz with a full width at half
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FIG. 1. Principle of the SQUID operation. �a� Schematic of the
electrical circuit. �b� Digital sampling oscilloscope record of the
high-frequency flux signal applied on the superconducting loop: the
�w excitation pulse is followed by a measuring dc pulse which
adiabatically reduces the barrier height and induces a selective tun-
nel escape of excited states.
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maximum ��=110 MHz. The resonance is interpreted in a
quantum description as the transition from �0� to �1� at the
frequency �01. Having the SQUID electrical parameters in
hand, the characteristics of the potential well are calculated.
The plasma frequency is �p=8.428 GHz and the well con-
tains eight energy levels for a total depth of �U=h
�61.6 GHz. Compared to Ref. 11, the present sample has
lower decoherence ���=110 MHz instead of 180 MHz�,
and the chosen bias point displays higher anharmonicity
�
=160 MHz instead of 100 MHz�. This improvement al-
lows for much more transition-selective coherent �w driv-
ing.

The transient nonlinear dynamics of the SQUID is probed
using a fast �w flux pulse followed by a measuring dc pulse.
The �w excitation is tuned on the resonance frequency ob-
tained from low power spectroscopy and the �w pulse dura-
tion is increased from 2 to 80 ns. The measurement delay as
well as the other measurement pulse settings remain un-
changed. During the transient regime, RLOs are observed, as
shown in Fig. 2�c�. From a fit of the first oscillations to a
damped sine function, the RLO frequency �R and the damp-
ing characteristic time T2

� are extracted. It reaches here 25 ns,
confirming the coherence improvement in this sample. The
dependence of �R with the �w amplitude is plotted in Fig. 3.
The error bar on �R is smaller than the experimental point
size, around 5 MHz. In our experiments, we have chosen to
excite levels which do not leak to voltage states before the
measurement pulse. This implies a limitation on the maxi-

mum microwave excitation amplitude. Experimentally, this
was checked by performing an experiment without measure-
ment pulse and by comparing the escape probability with and
without microwaves.

B. Classical interpretation

To describe the observed Rabi-like oscillations, we first
apply the classical approach developed in Ref. 12. Having
turned on the resonant driving force, the particle energy os-
cillates during a transient regime. The underlying mechanism
is related to the potential nonlinearity, which induces a
dephasing between the particle oscillations and the �w exci-
tation. It makes the �w alternatively accelerate and brake the
particle oscillations within the well. In the general case, �R
depends on f�w, �, and T1, and the complete set of equations
in Ref. 12 must be solved. Here, the excitation was tuned on
the resonance frequency obtained from low power spectros-
copy, which corresponds to the bottom well frequency �p in
a classical approach. In the limit of small damping ��RT1
�1� which corresponds to the experimental situation, �R is
then insensitive to T1 and coincides with the value calculated
in the absence of dissipation. In the following analysis, we
solved numerically the equation in Ref. 12 under these two
conditions. For the particular situation of small �w excita-
tion �f�w /a�1�, an analytical expression can be derived,

�R =

3

4
�p�1 + 2A2�1/3� f�w

m�p
2�2/3

, �4�

where A is a dimensionless parameter given by

A =
6a

m�p
2 = 18

27

m�p
2

�U
�1/2

. �5�

Figure 3�a� shows the fit of experimental data to the clas-
sical theory, the calibration coefficient c= f�w /V�w being the
only free parameter of the model. For consistency, we should
note that, in a classical description, the low power resonance
presented in Fig. 2�a� is associated with the plasma fre-
quency characterizing the bottom of the well. As spectro-
scopic data are used to extract the SQUID parameters, the
classical analysis leads to slightly different electrical param-
eters: C0=0.58 pF, �p=8.283 GHz, and �U=69.9h
� GHz. In the weakly damped limit, the best adjustment
which is obtained for c=3.50�10−22 J V−1 does not de-
scribe correctly the data on the full range of excitation am-
plitudes. At low �w amplitude, the observed linear depen-
dence is strongly different from the f�w

2/3 law predicted by the
classical approach. However, the agreement improves for
higher driving amplitude; this convergence will be discussed
at the end of the paper.

As a remark, it is possible to fit the data if arbitrary high
losses are introduced. Decreasing T1 down to 2.5 ns and
using c=2.90�10−22 J V−1, one obtains a good agreement
between the data and the classical theory �dashed line in Fig.
3�a��. However, this hypothesis is inconsistent with the mea-
sured T1=60 ns �Fig. 2�b�, experimental details in Ref. 22��.
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FIG. 2. �a� Low power spectroscopy �V�w=17.8 mV�. The fit to
a Gaussian line shape gives the resonance position and the line-
width. �b� Energy relaxation as a function of the measurement delay
Tm, fitted to an exponential law with the damping time T1. �c� Rabi-
like oscillation observed in the transient regime for high power �w
driving �V�w=631 mV�. The oscillation frequency and the damp-
ing time T2

� are extracted from a fit to an exponentially damped sine
function.
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It also would lead to overdamped Rabi-like oscillations, with
a T2

�=3 ns �Fig. 3�c�� which is one order of magnitude
smaller than the measured one.

C. Quantum approach

1. Decoherence-free calculation

The explanation of experimental data requires a full quan-
tum treatment. Since moderate decoherence has a minor im-
pact on the Rabi-like frequency, we first develop a pure
Hamiltonian theory.11,17,23

The particle is assumed to lay initially in the ground state.
At t=0, the �w flux is instantaneously switched on, and the
particle quantum state ���t�� evolves into a superposition of
the level states �n� according to the Schrödinger equation
with the Hamiltonian,

Ĥ�t� = h�p p̃2 + x̃2

2
− � 2

15




�p
�1/2

x̃3� + 
2h�1 cos�2��t�x̃ ,

�6�

where x̃ and p̃ are the reduced phase and momentum opera-
tors defined by

x̃ =
m�p

	
x̂, p̃ =

1

m	�p

p̂ . �7�

Expression �6� contains all the characteristic frequencies of
the problem: �i� the bottom well frequency �p, �ii� the detun-
ing 
=�01−�12 linked to the potential anharmonicity and

given by Eq. �3�, and �iii� �1, the Rabi frequency in the
two-level limit for a microwave excitation frequency �=�01,
which reads

�1 = �p
m�p

2	
� f�w

m�p
2� . �8�

To solve this time-dependent problem, we introduce another
picture in which the evolution of the particle state ����t�� is

driven by the Hamiltonian Ĥ��t�. This picture is related to
the Schrödinger one by

�n����t�� = ei2�n�t�n���t�� . �9�

In the two-level limit, this transformation corresponds to the
introduction of the well-known rotating frame at frequency
�. To proceed, we apply the rotating wave approximation

�RWA� to simplify the Hamiltonian Ĥ��t�. Considering a po-
tential well with N trapped energy levels, the resulting

Hamiltonian Ĥ�,RWA can be expressed in the ��n�� basis as
follows:

classical quantum
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FIG. 3. �Color online� Fit of the experimental �R �•� to a �a� classical and �d� quantum theory. In the case of weakly damped Rabi
oscillations, �R is independent of the damping time and identical to the one of a lossless system, both in the quantum and classical cases. The
classical model �solid line in �a�� fails to describe the low amplitude regime, unless excessive losses, incompatible with the measured T1, are
introduced �dashed line in �a��. The quantum prediction �solid line in �d�� accurately describes the experiment over the whole excitation
amplitude range. For �1��01−�02, the curve deviates from the two-level theory �dashed line in �d��, indicating a multilevel dynamics.
Simulated Rabi oscillation for a �w amplitude corresponding to the measurement shown in Fig. 2�c� is also plotted under various hypothesis:
classical calculation with �b� T1=60 ns and �c� T1=2.5 ns and quantum prediction �e� without and �f� with decoherence which suppresses
beating.
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Ĥ�,RWA = h�
0

�1

2
0 0

�1

2
�1��� � 0

0 � �

N − 1

�1

2

0 0 
N − 1
�1

2
�N−1���

� .

�10�

Here, �n���=�0n−n� and the ground-state energy E0 has
been set equal to 0. Note that x̃ presents matrix elements of
the order of 

 /�p on the diagonal and other which connect
neighbor states of order 2. Other terms of higher order in


 /�p are also present in the matrix. These terms vanish in
the RWA, which remains valid as long as �1��01. In this
quantum approach, the experimental low power resonance is
attributed to the �0�→ �1� transition; thus the following analy-
sis is performed for �=�01. The eigenvalues �n associated to

the eigenstates �en�� of Ĥ�,RWA are shown in Fig. 4. Having
solved the time evolution of ����t�� starting from the initial
state �0��= �0�, the conversion to the Schrödinger picture is
done according to Eq. �9�. Particularly, the probability to find
the system in the state �n� in the course of the oscillation
reads for n�0

pn�t� = 2 �
k,l�k

N−1

��n�ek���ek��0��0�el���el��n��

�cos�2���k − �l�t� . �11�

The occupation dynamics of state �n� implies the frequency
set ���k−�l�� �k� l� with weights associated to the connec-

tion of �0� to �n� via the eigenstates of Ĥ�,RWA. As shown in

Fig. 3�e�, the average energy of the particle �Ĥ�=�npn�t�En
undergoes Rabi-like oscillations. The model also predicts
modulations of the RLO amplitude which will be discussed
in the next paragraph. Our analysis shows that an estimate of

�R can be obtained by taking the minimum value of the fre-
quency set ���k−�l��. For improved precision, the theoretical
Rabi-like frequency is extracted from a fit of the first oscil-
lations to an exponentially damped sine function. This ap-
proach was checked to give similar results as a direct nu-
merical integration of the time-dependent Schrödinger
equation.

As shown in Fig. 3�d�, the quantum model describes all
the experimental features of the �R versus f�w dependence
with c=3.05�10−22 J V−1. The set of experimental data
covers the crossover between the two-level and the multi-
level dynamics. Indeed, when the �w amplitude is small
compared to the anharmonicity ��1�
�, we have �e0��
= ��0�+ �1�� /
2, �e1��= ��0�− �1�� /
2, and �en��= �n� for the
other higher energy levels. The dynamics thus concerns the
first two levels and one retrieves the familiar result �R=�1
�see Fig. 4�. This is nearly the case for the first measured
point, which corresponds to �1=65 MHz and presents a con-
tamination of level �2� below 10%. When �1	
, the cou-
pling between neighboring levels starts to distort the energy

spectrum of the lowest energy levels of Ĥ�,RWA �Fig. 4�.
Consequently, the state �e2�� gets contaminated by �0� and
�1� and the dynamics involves now three levels. In this re-
gime, the �R dependence on �1 starts to deviate from a linear
behavior, indicating the onset of two-photon processes.17,18

When �1�
, an increasing number of levels are involved.
As an example, the experimental oscillation presented in Fig.
2�c� involves four states. At larger �w amplitude, a macro-
scopic number of levels are involved; this regime was not
achieved at this working point but was discussed in Ref. 11
with about ten levels involved. The multilevel dynamics is
characterized by a clear saturation of the �R dependence,
compared to the low power linear behavior.

2. Beating and decoherence

In the absence of dissipation, the quantum model predicts
a modulation of the multilevel RLO amplitude. We interpret
these phenomena as a reminiscence of the different frequen-
cies involved in the system dynamics. The modulation be-
comes more and more complex with increasing �w ampli-
tude. Indeed, the higher the amplitude, the larger the number
of involved levels and the larger the number of frequencies
in the system. A clear beating appears when the frequency set
���k−�l�� displays two minimal values close to each other.

However, these modulations were not observed in our ex-
periments. We first analyzed the possibility of beating sup-
pression caused by the finite rise time of the �w amplitude.
If it is too slow, the population of the states �en�� for n�2
can be severely decreased as compared to the instantaneous
hypothesis. In the limiting case of an adiabatic increase in
the �w amplitude, the particle state remains in the
��e0�� , �e1��� subspace. ��1−�0� is then the only frequency
involved in the system dynamics �see Fig. 4� and there is no
beating. For a rise time as large as 2 ns �twice the experi-
mental rise time�, we checked numerically that this effect
does not lead to destructive interference strong enough to
suppress the beating.

We therefore argue that the strong suppression of the beat-
ing phenomenon could be due to decoherence. The dissipa-
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FIG. 4. �Color online� First eigenvalues of Ĥ�,RWA as a function
of �1. The dashed lines correspond to the limit �1 /
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sion of the spectrum is due to the rotating-frame transform.
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tive dynamics of the oscillator was investigated using a phe-
nomenological model. We assume that the reduced density
matrix of the driven oscillator �̂ satisfies the master equation,

i	�t�̂ = �Ĥ�,RWA, �̂� − iLR��̂� − iLD��̂� . �12�

Here, LR describes relaxation �accompanied by dephasing�
and can be expressed as follows:

LR��̂�kn = �
m

���km + �nm��kn − 2
kn�mk�mm� . �13�

The coefficients �kn can be calculated microscopically in the
Markovian limit, assuming the environment is a bath of har-
monic oscillators. The last term LD describes the pure
dephasing,

LD��̂�kn = �1 − 
kn��kn�kn, �14�

with �kn=�nk�0. This term is phenomenological: the coef-
ficients � were obtained microscopically only in the two-
level limit. According to our analysis, relaxation alone �cor-

responding to T1=60 ns in the experiment� is too weak to
explain a strong suppression of the beating. Instead, the ab-
sence of beating can be attributed to strong pure dephasing
between next-neighboring levels, described by �n,n+2. In-
deed, the observed exponential decay of the Rabi-like oscil-
lations with the suppressed beating can be well explained
assuming �02�h� /�1, which becomes relevant for the mea-
sured escape probabilities corresponding to the cases of �1
=130 and 260 MHz with �=5�106 GHz2.

IV. DISCUSSION

Surprisingly, when �1�1.5
, the classical and quantum
predictions for the �R��1� dependence are quite identical. For
the lowest excitation amplitudes meeting this condition, only
four levels are involved in the Rabi-like oscillation; the
granularity of energy as compared to the mean energy of the
system is clearly not negligible. Moreover, this convergence
is obtained for weakly damped oscillation, for which moder-
ate relaxation and dephasing do not affect �R. Thus, this ef-
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FIG. 5. �Color� Quantum �q� and classical �c� dynamics during the first Rabi period TR for increasing excitation amplitudes �1.
Decoherence is neglected in all calculations. Wigner and classical distributions are plotted in the phase space �position x, conjugate moment
p�. In the Wigner distribution plots, red �blue� corresponds to negative �positive� values. The ticks indicate the position of the origin of the
phase space. Negative areas are always intense close to t=0.5TR, when the system experiences fully the nonlinearity of the potential well,
highlighting the quantum nature of the corresponding states. Note also the progressive convergence, as �1 increases, between the principal
blue cloud of the Wigner map and the classical prediction.
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fect is not due to decoherence which would degrade the sys-
tem quantum dynamics into a classical one. The convergence
is linked to the intrinsic physics of a weakly anharmonic
oscillator.

To shed some light on the interplay between nonlinearity
and the quantum or classical nature of the Rabi-like oscilla-
tions, we developed an approach similar to the one presented
in Ref. 8. We calculated the time evolution of the Wigner
function,

W�x,p,t� =
1

�	
� dx��x + x���̂�t��x − x��e−2ipx�/	, �15�

during one Rabi oscillation, starting from the oscillator
ground state �0�. Here, �̂ is the reduced density matrix de-
scribing the driven oscillator. For the sake of comparison, we
also determined the classical time evolution of the probabil-
ity density for a Gaussian distribution of initial points in
phase space which mimics the distribution associated to the
ground state �0�. Decoherence effects were neglected in both
approaches. This analysis highlights the differences in the
system dynamics arising from quantum mechanics. Figure 5
shows the results for three different excitation amplitudes: �i�
the lowest excitation amplitude measured in this paper, �1
=60 MHz, which induces a quasi-two-level oscillation, �ii�
�1=260 MHz, the highest excitation amplitude, and �iii� �1
=520 MHz, a �nonmeasured� value which generates seven-
level oscillation, similar to the high excitation results pre-
sented in Ref. 11.

The red areas in Fig. 5 correspond to negative values of
the Wigner function, an unambiguous signature of the quan-
tum nature of the state under consideration; in the blue re-
gions W is positive. As expected for short times �shorter than
the so-called Ehrenfest time�, the system behaves classically
and the positive part of W resembles the classical probability
distribution, regardless of the value of the microwave ampli-
tude, as illustrated in Fig. 5 for t=0.1TR. For longer times,
this resemblance gets lost for small microwave amplitudes.
This is to be expected: due to the anharmonicity, the system
remains close to the two-level limit for small amplitudes and
the time evolution is essentially quantum. For larger ampli-
tudes, the dynamics involves an increasing number of quan-
tum states and according to the correspondence principle
should behave more and more classically. Indeed, the time
evolution of the blue regions closely follows that of the clas-
sical probability distribution in this limit.

Interestingly, though, is the fact that the red regions of
negative W continue to exist at any value of microwave am-
plitude. These regions, signaling the occurrence of quantum
interferences, appear to be most pronounced for t=0.5TR. A
qualitative explanation for this fact can be obtained by con-
sidering the time evolution of the anharmonic oscillator,
starting from its ground state �0� at time t=0. Under the
influence of the microwaves, resonant with the transition be-
tween the lowest eigenstates, transitions between neighbor-
ing levels are possible, and a superposition state is formed
involving an increasing number of energy levels. Due to an-
harmonicity, the detuning increases with increasing level in-
dex and the transitions become less resonant. At t=0.5TR,

nonlinearity prevents higher energy states from being excited
and microwaves lead to a reduction in the system energy.
Thus the existence of Rabi-like oscillation is closely linked
to the anharmonicity of the potential well and the maximum
number of states involved in the superposition is determined
by the interplay of the anharmonicity and the microwave
amplitude. Such oscillations do not show up in a harmonic
oscillator driven by resonant monochromatic excitation. In
this last situation, the generated quasiclassical states present
minimum fluctuations and are thus very close to classic ones.
On the contrary, in the case of an anharmonic oscillator, for
times close to t=0.5TR, nonlinearity gives birth to pro-
nounced quantum interferences, and the corresponding
Wigner function is characterized by the existence of large
negative regions.

Finally, we can remark that the analysis of the Rabi oscil-
lation frequency is one measurement among many possibili-
ties. It appears that this quantity is not very sensitive to the
quantum interferences characterizing the extreme state of the
Rabi oscillation. To track a quantum signature in the multi-
level regime ��1�
�, one could concentrate on the oscilla-
tion beating, a reminiscence of the different transition fre-
quencies in the system. Another appealing perspective would
be to extend the state tomography scheme developed in
phase qubits24 to our multilevel system. Though experimen-
tally challenging, this would open interesting possibilities
such as the investigation of the effects of decoherence on the
state superposition generated at high excitation power.

V. CONCLUSION

In conclusion, a dc SQUID is a tunable and well-defined
anharmonic quantum oscillator which appears as an experi-
mental model system to explore quantum and classical dy-
namics. The dependence of the Rabi-like oscillation fre-
quency on the �w amplitude is a clear probe of the nature of
oscillator dynamics when up to three levels participate in the
oscillation. It then exhibits a clear quantum behavior which
is not described by a classical model. At higher excitation
power, when more than four states are involved in the oscil-
lation, the quantum and classical predictions for this particu-
lar quantity converge. This convergence was discussed with
the help of Wigner quasidistribution of probability. However,
one should not hastily conclude than this nonlinear oscillator
behaves classically as soon as four levels are excited. Indeed,
our theoretical study shows that for times corresponding to
the middle of the Rabi-like oscillation �the generalization of
a � pulse�, the system always presents strong quantum inter-
ferences even in the high power excitation regime. Future
work will concentrate on the shape of the oscillations which
contains more information on the multilevel dynamics.
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